Minimum-weight design for three dimensional woven composite stiffened panels using neural networks and genetic algorithms

Abstract

The paper describes a modeling strategy for multi-scale analysis and optimization of stiffened panels, made of three-dimensional woven composites. Artificial neural network techniques are utilized to generate an approximate response for the optimum structural design in order to increase efficiency and applicability. The artificial neural networks are integrated with genetic algorithms to optimize mixed discrete–continuous design variables for the three dimensional woven composite structures. The proposed procedure is then applied to the multi-objective optimal design of a stiffened panel subject to buckling and post-buckling requirements

Similar works

Full text

thumbnail-image

Archivio istituzionale della ricerca - Politecnico di Milano

redirect
Last time updated on 12/11/2016

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

Licence: info:eu-repo/semantics/openAccess