Discontinuity induced bifurcations of non-hyperbolic cycles in nonsmooth systems

Abstract

We analyze three codimension-two bifurcations occurring in nonsmooth systems, when a nonhyperbolic cycle (fold, flip, and Neimark–Sacker cases, in both continuous and discrete time) interacts with one of the discontinuity boundaries characterizing the system's dynamics. Rather than aiming at a complete unfolding of the three cases, which would require specific assumptions on both the class of nonsmooth system and the geometry of the involved boundary, we concentrate on the geometric features that are common to all scenarios. We show that, at a generic intersection between the smooth and discontinuity induced bifurcation curves, a third curve generically emanates tangentially to the former. This is the discontinuity induced bifurcation curve of the secondary invariant set (the other cycle, the double-period cycle, or the torus, respectively) involved in the smooth bifurcation. The result can be explained intuitively, but its validity is proved here rigorously under very general conditions. Three examples from different fields of science and engineering are also reported

Similar works

Full text

thumbnail-image

Archivio istituzionale della ricerca - Politecnico di Milano

redirect
Last time updated on 12/11/2016

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.