Controllability analysis of multi objective control systems

Abstract

The performance requirements stated in project specifications often comprise conflicting objectives. These objectives may further be a complex mix of steady state and dynamic performance. Control devices such as solenoid actuators are often chosen purely on steady state force characteristics, due to the difficulty of appraising the conflicting and generally non-linear nature of the performance objectives. This can have ramifications in terms not only of the actuator performance, but also in the overall controllability of the system when closed-loop control is implemented. An example automotive application examining the multi objective controllability of electronically actuated valves is presented. Multi objective evolutionary techniques are utilised to derive the optimal force-displacement characteristics and also dynamic characteristics of the desired actuator under the constraint of design performance criteria. The selected actuator is then assessed for its controllability and dynamic performance

Similar works

Full text

thumbnail-image

University of Lincoln Institutional Repository

redirect
Last time updated on 28/06/2012

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.