Skip to main content
Article thumbnail
Location of Repository

Controllability analysis of multi objective control systems

By Paul Stewart, G. W. Jewell, R. E. Clarke and P. J. Fleming

Abstract

The performance requirements stated in project specifications often comprise conflicting objectives. These objectives may further be a complex mix of steady state and dynamic performance. Control devices such as solenoid actuators are often chosen purely on steady state force characteristics, due to the difficulty of appraising the conflicting and generally non-linear nature of the performance objectives. This can have ramifications in terms not only of the actuator performance, but also in the overall controllability of the system when closed-loop control is implemented. An example automotive application examining the multi objective controllability of electronically actuated valves is presented. Multi objective evolutionary techniques are utilised to derive the optimal force-displacement characteristics and also dynamic characteristics of the desired actuator under the constraint of design performance criteria. The selected actuator is then assessed for its controllability and dynamic performance

Topics: G700 Artificial Intelligence, H330 Automotive Engineering, H360 Electromechanical Engineering, G530 Systems Analysis and Design
Publisher: IEEE
Year: 2002
OAI identifier: oai:eprints.lincoln.ac.uk:2199

Suggested articles


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.