Decision Tree-Based Multiple Classifier Systems: An FPGA Perspective

Abstract

Combining a hardware approach with a multiple classifier method can deeply improve system performance, since the multiple classifier system can successfully enhance the classification accuracy with respect to a single classifier, and a hardware implementation would lead to systems able to classify samples with high throughput and with a short latency. To the best of our knowledge, no paper in the literature takes into account the multiple classifier scheme as additional design parameter, mainly because of lack of efficient hardware combiner architecture. In order to fill this gap, in this paper we will first propose a novel approach for an efficient hardware implementation of the majority voting combining rule. Then, we will illustrate a design methodology to suitably embed in a digital device a multiple classifier system having Decision Trees as base classifiers and a majority voting rule as combiner. Bagging, Boosting and Random Forests will be taken into account. We will prove the effectiveness of the proposed approach on two real case studies related to Big Data issues

Similar works

Full text

thumbnail-image

Archivio della ricerca - Università degli studi di Napoli Federico II

redirect
Last time updated on 12/11/2016

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

Licence: license uri:http://creativecommons.org/licenses/by-nc-nd/3.0/it/