Clustering streamflow time series for regional classification

Abstract

The article aims to show how some dissimilarity criteria, the Mahalanobis distance between regression coefficients and the Euclidean distance between Autoregressive weights, can be applied to hydrologic time series clustering. Specifically, the temporal dynamics of streamflow time series are compared through the estimated parameters of the corresponding linear models which may include both short and long memory components. The performance of the proposed technique is assessed by means of an empirical study concerning a set of daily streamflow series recorded at sites in Oregon and Washington State. © 2011 Elsevier B.V

Similar works

Full text

thumbnail-image

Archivio della ricerca - Università degli studi di Napoli Federico II

redirect
Last time updated on 12/11/2016

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.