Cu(100) surface: High-resolution experimental and theoretical band mapping

Abstract

We investigate the electronic structure of the clean Cu(100) surface both by high-resolution angular-resolved ultraviolet photoelectron spectroscopy and by ab initio full potential linear muffin tin orbital calculations. The experimental energy and angular high resolution allows us to distinguish surface from bulk states unambiguosly and to determine the energy dispersion of the surface states. In particular, two surface states unknown so far have been brought to light. The results agree well with the electronic structure determined theoretically. The importance of these results also resides in the use of noble metal surfaces as substrates for organic molecule adsorption, where surface states are candidates for the formation of hybrid bonds

Similar works

Full text

thumbnail-image

Archivio della ricerca- Università di Roma La Sapienza

redirect
Last time updated on 12/11/2016

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.