An Iterative Algorithm with Joint Sparsity Constraints for Magnetic Tomography

Abstract

Magnetic tomography is an ill-posed and ill-conditioned inverse problem since, in general, the solution is non-unique and the measured magnetic field is affected by high noise. We use a joint sparsity constraint to regularize the magnetic inverse problem. This leads to a minimization problem whose solution can be approximated by an iterative thresholded Landweber algorithm. The algorithm is proved to be convergent and an error estimate is also given. Numerical tests on a bidimensional problem show that our algorithm outperforms Tikhonov regularization when the measurements are distorted by high noise

Similar works

Full text

thumbnail-image

Archivio della ricerca- Università di Roma La Sapienza

redirect
Last time updated on 12/11/2016

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.