On the equivalence between the sigmoidal approach and Utkin's approach for piecewise-linear models of gene regulatory networks

Abstract

This paper is concerned with piecewise linear dynamical systems modeling a simple class of gene regulatory networks. One of the main issues when dealing with these problems, is that the vector field is not defined on the discontinuity hyperplanes. Two different methods are usually employed in literature to overcome this issue: Filip- pov’s convexification approach and the steep sigmoidal approach. A particular selection of Filippov’s vector field, namely Utkin’s vector field, will be of interest to us. Our purpose is twofold: show that Utkin’s vector field is well defined on the intersection � of two discontinuity hyperplanes (under assumptions of attractivity) and prove that, for � nodally attractive and attractive with three surfaces, Utkin’s approach and the steep sigmoidal approach are equivalent, i.e., the corresponding solutions on � are the same. This allows to study the piecewise dynamical system, and hence the gene regulatory network it models, with no ambiguity

Similar works

Full text

thumbnail-image

Archivio istituzionale della ricerca - Università di Bari

redirect
Last time updated on 12/11/2016

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.