The purpose of this paper is to analyze the isoperimetric inequality for symmetric log-convex probability measures on the line. Using geometric arguments we first re-prove that extremal sets in the isoperimetric inequality are intervals or complement of intervals (a result due to Bobkov and Houdré). Then we give a quantitative form of the isoperimetric inequality, leading to a somehow anomalous behavior. Indeed, it could be that a set is very close to be optimal, in the sense that the isoperimetric inequality is almost an equality, but at the same time is very far (in the sense of the symmetric difference between sets) from any extremal sets! From the results on sets we derive quantitative functional inequalities of weak Cheeger type
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.