Hydrosodalite, Na-6[AlSiO4](6)center dot 8H(2)O, is a synthetic modification of natural sodalite with water molecules replacing for the anion at the centre of the beta cage. Hydrosodalite has a cubic structure with space group P (4) over bar 3n and a approximate to 8.9 angstrom. Cation ordering and framework distortions leading to symmetry reduction were observed for synthetic sodalites but have never been reported for hydrosodalite. This work reports the first experimental evidence of a symmetry reduction in hydrosodalite. The investigated sample is a K-exchanged hydrosodalite with chemical formula K-6[AlSiO4](6)center dot 7.8H(2)O. The structure refinement was performed using synchrotron powder diffraction data in space group P1 with a = 9.196(1) angstrom, b = 9.188(1) angstrom, and c = 9.205(1) angstrom, alpha = 89.69(1)degrees, beta = 90.43(1)degrees, and gamma = 89.791(9)degrees. K+ strongly interacts with all the framework oxygen atoms of the hexagonal ring and provokes anisotropic distortion of the framework. In the distorted framework, the only possible distribution scheme for the K+ ions is ordered, to prevent any Coulomb repulsion between adjacent ions. In addition, the ordered scheme is the only to ensure even distribution of the positive cation charges with respect to the Al atoms (AI:K ratio is 1: 1). In fact, each of the six Al atoms has three K+ ions at a distance of 3.5-3.9 angstrom and in turn, each of the six K+ ions has three Al atoms at a distance of 3.5-3.9 angstrom. K+ ions display a coordination number from 8 to 10 and mean K-O distance, including the water molecules, of 2.921-3.043 angstrom. (c) 2006 Elsevier Inc. All rights reserved
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.