The problem of reconstructing a discrete set from its X-rays in a finite number of prescribed directions is NP-complete when the number of prescribed directions is greater than two. In this paper, we consider an interesting subclass of discrete sets having some connectivity and convexity properties and we provide a polynomial-time algorithm for reconstructing a discrete set of this class from its X-rays in directions (1, 0), (0, 1) and (1, 1). This algorithm can be easily extended to contexts having more than three X-rays
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.