Background: Through negative regulation of gene expression, microRNAs (miRNAs) can function as oncosuppressors in
cancers, and can themselves show altered expression in various tumor types. Here, we have investigated medulloblastoma
tumors (MBs), which arise from an early impairment of developmental processes in the cerebellum, where Notch signaling is
involved in many of the cell-fate-determining stages. Notch regulates a subset of MB cells that have stem-cell-like properties
and can promote tumor growth. On the basis of this evidence, we hypothesized that miRNAs targeting the Notch pathway
can regulate these phenomena, and can be used in anti-cancer therapies.
Methodology/Principal Findings: In a screening of potential targets within Notch signaling, miR-34a was seen to be a
regulator of the Notch pathway through its targeting of Notch ligand Delta-like 1 (Dll1). Down-regulation of Dll1 expression
by miR-34a negatively regulates cell proliferation, and induces apoptosis and neural differentiation in MB cells. Using an
inducible tetracycline on-off model of miR-34a expression, we show that in Daoy MB cells, Dll1 is the first target that is
regulated in MB, as compared to the other targets analyzed here: Cyclin D1, cMyc and CDK4. MiR-34a expression negatively
affects CD133+/CD15+ tumor-propagating cells, then we assay through reverse-phase proteomic arrays, Akt and Stat3
signaling hypo-phosphorylation. Adenoviruses carrying the precursor miR-34a induce neurogenesis of tumor spheres
derived from a genetic animal model of MB (Patch1+/- p53-/-), thus providing further evidence that the miR-34a/Dll1 axis
controls both autonomous and non autonomous signaling of Notch. In vivo, miR-34a overexpression carried by adenoviruses
reduces tumor burden in cerebellum xenografts of athymic mice, thus demonstrating an anti-tumorigenic role of miR-34a in
vivo.
Conclusions/Significance: Despite advances in our understanding of the pathogenesis of MB, one-third of patients with MB
remain incurable. Here, we show that stable nucleic-acid-lipid particles carrying mature miR-34a can target Dll1 in vitro and
show equal effects to those of adenovirus miR-34a cell infection. Thus, this technology forms the basis for their therapeutic
use for the delivery of miR-34a in brain-tumor treatment, with no signs of toxicity described to date in non-human primate
trials
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.