Some new monotonicity formulas and the singular set in the lower dimensional obstacle problem

Abstract

We construct two new one-parameter families of monotonicity formulas to study the free boundary points in the lower dimensional obstacle problem. The first one is a family of Weiss type formulas geared for points of any given homogeneity and the second one is a family of Monneau type formulas suited for the study of singular points. We show the uniqueness and continuous dependence of the blowups at singular points of given homogeneity. This allows to prove a structural theorem for the singular set

Similar works

Full text

thumbnail-image

Archivio istituzionale della ricerca - Università di Padova

redirect
Last time updated on 12/11/2016

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.