Nonparametric estimation methods for sparse contingency tables

Abstract

The problems related with multinomial sparse data analysis have been widely underlined in statistical literature in recent years. Concerning the estimation of the mass distribution, it has been widely spread the usage of nonparametric methods, particularly in the framework of ordinal variables. The aim of this paper is to evaluate the performance of kernel estimators in the framework of sparse contingency tables with ordinal variables comparing them with alternative methodologies. Moreover, an approach to estimate the mass distribution nominal variables based on a kernel estimator is proposed. At the end a case study in actuarial field is presented

Similar works

Full text

thumbnail-image

Archivio istituzionale della ricerca - Università di Padova

redirect
Last time updated on 12/11/2016

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.