Creep behavior of Mg–11Y–5Gd–2Zn–0.5Zr (wt.%) at 573K

Abstract

The effect of microstructure on the tensile-creep behavior of Mg-11Y-5Gd-2Zn-0.5Zr (wt.%) (WGZ1152) at 573K (0.64T m) and stresses between 30MPa and 140MPa was investigated. The minimum creep rate of the peak-aged (T6) alloy was almost two orders of magnitude lower than that for a WE54-T6 (Mg-5.2Y-3.6RE-0.5Zr (wt.%)) alloy. The peak-aged condition (T6) exhibited slightly greater creep resistance than the as-cast condition. The solution treated (T4) material exhibited the lowest creep resistance. The creep stress exponent (∼5) suggested that dislocation creep was the dominant secondary creep mechanism. The minimum creep rate and time-to-fracture could be described by the Monkman-Grant equation. An in-situ creep experiment indicated that intergranular cracking was prevalent in the tertiary creep regime and the crack propagation path tended to follow the grain boundaries

Similar works

Full text

thumbnail-image

Warwick Research Archives Portal Repository

redirect
Last time updated on 28/06/2012

This paper was published in Warwick Research Archives Portal Repository.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.