Speckle fluctuation spectroscopy of intracellular motion in living tissue using coherence-domain digital holography

Abstract

Dynamic speckle from 3-D coherence-gated optical sections provides a sensitive label-free measure of cellular activity up to 1 mm deep in living tissue. However, specificity to cellular functionality has not previously been demonstrated. In this work, we perform fluctuation spectroscopy on dynamic light scattering captured using coherence-domain digital holography to obtain the spectral response of tissue that is perturbed by temperature, osmolarity, and antimitotic cytoskeletal drugs. Different perturbations induce specific spectrogram response signatures that can show simultaneous enhancement and suppression in different spectral ranges. (C) 2010 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3456369

Similar works

Full text

thumbnail-image

Purdue E-Pubs

redirect
Last time updated on 25/06/2012

This paper was published in Purdue E-Pubs.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.