Skip to main content
Article thumbnail
Location of Repository

Milnor number equals Tjurina number for functions on space curves

By D. (David) Mond and Duco van Straten


The equality of the Milnor number and Tjurina number for functions on space curve singularities, as conjectured recently by V. Goryunov, is proved. As a consequence, the discriminant in such a situation is a free divisor

Topics: QA
Publisher: Cambridge University Press
Year: 2001
OAI identifier:

Suggested articles


  1. (1964). A generalised Koszul complex II', doi
  2. (1995). A note on the discriminant of a space curve', doi
  3. (1989). Calcul differentiel et classes characteristique en geometrie algeUbrique,
  4. (1993). Cohen±Macaulay rings, doi
  5. (1986). Cotangent functors of curve singularities', doi
  6. (1988). Critical points of functions on analytic varieties', doi
  7. (1980). Deformationen von Cohen±Macaulay Algebren', doi
  8. (1979). Deformationen von Gorenstein Singularita $ ten der Kodimension', doi
  9. (1977). Deformations of Cohen±Macaulay schemes of codimension 2 and non-singular deformations of space-curves', doi
  10. (2000). Functions on space curves', doi
  11. (1991). Hypersurface sections and obstructions (rational surface singularities), doi
  12. (1982). Linkage and the Koszul homology of ideals', doi
  13. (1981). On Zariski's criterion for equisingularity and non-smoothable monomial cures, thesis, Universite! Paris VII,
  14. (1990). One-forms on singular curves and the topology of real curve singularities', doi
  15. (1971). Quasihomogene isolierte Singularita $ ten von Hyper¯a $ chen', doi
  16. (1985). The dimension of smoothing components', doi
  17. (1980). The Koszul algebra of a codimension two embedding', doi
  18. (1980). The Milnor number and deformations of complex curve singularities', doi
  19. (1960). X bererschiedeneDifferentenbegriffe,BerichteHeidelbergerAkademiederWissenschaften I. Abhandlungen

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.