Location of Repository

Planck early results. II. The thermal performance of Planck

By P.A.R. Ade, N. Aghanim, M. Arnaud, M. Ashdown, J. Aumont, C. Baccigalupi, M. Baker, A. Balbi, A.J. Banday, R.B. Barreiro, E. Battaner, K. Benabed, A. Benoît, J.-P. Bernard, M. Bersanelli, P. Bhandari, R. Bhatia, J.J. Bock, A. Bonaldi, J.R. Bond, J. Borders, J. Borrill, F.R. Bouchet, B. Bowman, T. Bradshaw, E. Bréelle, M. Bucher, C. Burigana, R.C. Butler, P. Cabella, P. Camus, C.M. Cantalupo, B. Cappellini, J.-F. Cardoso, A. Catalano, L. Cayon, A. Challinor, A. Chamballu, J.P. Chambelland, J. Charra, M. Charra, L.-Y. Chiang, C. Chiang, P.R. Christensen, D.L. Clements, B. Collaudin, S. Colombi, F. Couchot, A. Coulais, B.P. Crill, M. Crook, F. Cuttaia, C. Damasio, L. Danese, R.D. Davies, R.J. Davis, P. De Bernardis, G. De Gasperis, A. De Rosa, J. Delabrouille, J.-M. Delouis, F.-X. Désert, U. Doerl, K. Dolag, S. Donzelli, O. Doré, M. Douspis, X. Dupac, G. Efstathiou, T.A. Enßlin, H.K. Eriksen, F. Finelli, S. Foley, O. Forni, P. Fosalba, J.-J. Fourmond, M. Frailis, E. Franceschi, S. Galeotta, K. Ganga, E. Gavila, M. Giard, G. Giardino, Y. Giraud-Héraud, J. Gonzalez-Nuevo, K.M. Gorski, S. Gratton, A. Gregorio, A. Gruppuso, G. Guyot, D. Harrison, G. Helou, S. Henrot-Versillé, C. Hernandez-Monteagudo, D. Herranz, S.R. Hildebrandt, E. Hivon, M. Hobson, W.A. Holmes, A. Hornstrup, W. Hovest, R.J. Hoyland, K.M. Huffenberger, U. Israelsson, A.H. Jaffe, W.C. Jones, M. Juvela, E. Keihänen, R. Keskitalo, T.S. Kisner, R. Kneissl, L. Knox, H. Kurki-Suonio, G. Lagache, J.-M. Lamarre, P. Lami, A. Lasenby, R.J. Laureijs, C. R. Lawrence, S. Leach, R. Leonardi, C. Leroy, P.B. Lilje, M. Lopez-Caniego, P.M. Lubin, J.F. Macias-Perez, T. Maciaszek, C.J. Mactavish, B. Maffei, D. Maino, N. Mandolesi, R. Mann, M. Maris, E. Martinez-Gonzalez, S. Masi, S. Matarrese, F. Matthai, P. Mazzotta, P. McGehee, P.R. Meinhold, A. Melchiorri, F. Melot, L. Mendes, A. Mennella, M.-A. Miville-Deschênes, A. Moneti, L. Montier, J. Mora, G. Morgante, N. Morisset, D. Mortlock, D. Munshi, A. Murphy, P. Naselsky, A. Nash, P. Natoli, C.B. Netterfield, D. Novikov, I. Novikov, I.J. O'Dwyer, S. Osborne, F. Pajot, F. Pasian, G. Patanchon, D. Pearson, O. Perdereau, L. Perotto, F. Perrotta, F. Piacentini, M. Piat, Stéphane Plaszczynski, P. Platania, E. Pointecouteau, G. Polenta, N. Ponthieu, T. Poutanen, G. Prézeau, M. Prina, S. Prunet, J.-L. Puget, J.P. Rachen, R. Rebolo, M. Reinecke, C. Renault, S. Ricciardi, T. Riller, I. Ristorcelli, G. Rocha, C. Rosset, J.A. Rubino-Martin, B. Rusholme, M. Sandri, D. Santos, B.M. Schaefer, D. Scott, M.D. Seiffert, P. Shellard, G.F. Smoot, Jean-Luc Starck, P. Stassi, F. Stivoli, V. Stolyarov, Radek Stompor, R. Sudiwala, J.-F. Sygnet, J.A. Tauber, L. Terenzi, L. Toffolatti, M. Tomasi, J.-P. Torre, M. Tristram, J. Tuovinen, L. Valenziano, L. Vibert, P. Vielva, F. Villa, N. Vittorio, L.A. Wade, B.D. Wandelt, C. Watson, S. White, A. Wilkinson, P. Wilson, D. Yvon, A. Zacchei, B. Zhang and A. Zonca

Abstract

Also available at http://www.rssd.esa.intInternational audienceThe performance of the Planck instruments in space is enabled by their low operating temperatures, 20K for LFI and 0.1K for HFI, achieved through a combination of passive radiative cooling and three active mechanical coolers. Active coolers were chosen to minimize straylight on the detectors and to maximize lifetime. The scientific requirement for very broad frequency led to two detector technologies with widely different temperature and cooling needs. This made use of a helium cryostat, as used by previous cryogenic space missions (IRAS, COBE, ISO, SPITZER, AKARI), infeasible. Radiative cooling is provided by three V-groove radiators and a large telescope baffle. The active coolers are a hydrogen sorption cooler (<20K), a 4He Joule-Thomson cooler (4.7K), and a 3He-4He dilution cooler (1.4K and 0.1K). The flight system was at ambient temperature at launch and cooled in space to operating conditions. The bolometer plate of the High Frequency Instrument reached 93mK on 3 July 2009, 50 days after launch. The solar panel always faces the Sun, shadowing the rest of Planck, and operates at a mean temperature of 384K. At the other end of the spacecraft, the telescope baffle operates at 42.3K and the telescope primary mirror operates at 35.9K. The temperatures of key parts of the instruments are stabilized by both active and passive methods. Temperature fluctuations are driven by changes in the distance from the Sun, sorption cooler cycling and fluctuations in gas-liquid flow, and fluctuations in cosmic ray flux on the dilution and bolometer plates. These fluctuations do not compromise the science data

Topics: [ PHYS.ASTR.IM ] Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM], [ SDU.ASTR.IM ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]
Publisher: EDP Sciences
Year: 2011
DOI identifier: 10.1051/0004-6361
OAI identifier: oai:HAL:in2p3-00555658v1
Provided by: Hal-Diderot
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://hal.in2p3.fr/in2p3-0055... (external link)
  • http://hal.in2p3.fr/in2p3-0055... (external link)
  • http://hal.in2p3.fr/in2p3-0055... (external link)
  • http://www.rssd.esa.int (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.