Location of Repository

Experimental constraints on the uncoupled Galileon model from SNLS3 data and other cosmological probes

By J. Neveu, V. Ruhlmann-Kleider, A. Conley, N. Palanque-Delabrouille, P. Astier, J. Guy and E. Babichev


19 pages, 15 figures, submitted to Astronomy and AstrophysicsInternational audienceThe Galileon model is a modified gravity theory that may provide an explanation for the accelerated expansion of the Universe. This model does not suffer from instabilities or ghost problems (normally associated with higher-order derivative theories), restores local General Relativity -- thanks to the Vainshtein screening effect -- and predicts late time acceleration of the expansion. In this paper, we derive a new definition of the Galileon parameters that allows us to avoid having to choose initial conditions for the Galileon field, and then test this model against precise measurements of the cosmological distances and the rate of growth of cosmic structures. We observe a small tension between the constraints set by growth data and those from distances. However, we find that the Galileon model remains consistent with current observations and is still competitive with the \Lambda CDM model, contrary to what was concluded in recent publications

Topics: [ PHYS.GRQC ] Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]
Publisher: EDP Sciences
Year: 2013
DOI identifier: 10.1051/0004-6361
OAI identifier: oai:HAL:hal-00813451v1
Provided by: Hal-Diderot
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • https://hal.archives-ouvertes.... (external link)
  • https://hal.archives-ouvertes.... (external link)
  • https://hal.archives-ouvertes.... (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.