Location of Repository

Finite size effects on crack front pinning at heterogeneous planar interfaces: Experimental, finite elements and perturbation approaches

By Sylvain Patinet, Lina Alzate, Etienne Barthel, Davy Dalmas, Damien Vandembroucq and Véronique Lazarus


International audienceUnderstanding the role played by the microstructure of materials on their macroscopic failure properties is an important challenge in solid mechanics. Indeed, when a crack propagates at a heterogeneous brittle interface, the front is trapped by tougher regions and deforms. This pinning induces non-linearities in the crack propagation problem, even within Linear Elastic Fracture Mechanics theory, and modifies the overall failure properties of the material. For example crack front pinning by tougher places could increase the fracture resistance of multilayer structures, with interesting technological applications. Analytical perturbation approaches, based on Bueckner-Rice elastic line models, focus on the crack front perturbations, and hence allow for a description of these phenomena. Here, they are applied to experiments investigating the propagation of a purely interfacial crack in a simple toughness pattern: a single defect strip surrounded by homogeneous interface. We show that by taking into account the finite size of the body, quantitative agreement with experimental and finite elements results is achieved. In particular this method allows to predict the toughness contrast, i.e. the toughness difference between the single defect strip and its homogeneous surrounding medium. This opens the way to a more accurate use of the perturbation method to study more disordered heterogeneous materials, where the finite elements method is less adequate. From our results, we also propose a simple method to determine the adhesion energy of tough interfaces by measuring the crack front deformation induced by known interface patterns

Topics: [ PHYS.COND.CM-MS ] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]
Publisher: Elsevier
Year: 2013
DOI identifier: 10.1016/j.jmps.2012.10.012
OAI identifier: oai:HAL:hal-00815368v1
Provided by: Hal-Diderot
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • https://hal.archives-ouvertes.... (external link)
  • https://hal.archives-ouvertes.... (external link)
  • https://hal.archives-ouvertes.... (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.