Skip to main content
Article thumbnail
Location of Repository

A direct proof of Malus' theorem using the symplectic structure of the set of oriented straight lines

By Charles-Michel Marle


We present a direct proof of Malus' theorem in geometrical Optics founded on the symplectic structure of the set of all oriented straight lines in an Euclidean affine space. Nous présentens une preuve directe du théorème de Malus de l'optique géométrique basée sur la structure symplectique de l'ensemble des droites orientées d'un espace affine euclidien

Topics: Lagrangian submanifolds, Geometrical Optics, Malus' Theorem, symplectic structuress, Lagrangian submanifolds., AMS 53D05, 53D12, 53B50, 7803., [ MATH.MATH-SG ] Mathematics [math]/Symplectic Geometry [math.SG], [ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]
Publisher: HAL CCSD
Year: 2014
OAI identifier: oai:HAL:hal-01059542v1
Provided by: Hal-Diderot

Suggested articles

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.