MEPE/OF45 protects cells from DNA damage induced killing via stabilizing CHK1.

Abstract

Matrix extracellular phosphoglycoprotein/osteoblast factor 45 (MEPE/OF45) was cloned in 2000 with functions related to bone metabolism. We identified MEPE/OF45 for the first time as a new co-factor of CHK1 in mammalian cells to protect cells from DNA damage induced killing. We demonstrate here that MEPE/OF45 directly interacts with CHK1. Knocking down MEPE/OF45 decreases CHK1 levels and sensitizes the cells to DNA damage inducers such as ionizing radiation (IR) or camptothicin (CPT)-induced killing. Over-expressing wild-type MEPE/OF45, but not the mutant MEPE/OF45 (depleted the key domain to interact with CHK1) increases CHK1 levels in the cells and increases the resistance of the cells to IR or CPT. MEPE/OF45, interacting with CHK1, increases CHK1 half-life and decreases CHK1 degradation through the ubiquitine-mediated pathway. In addition, the interaction of MEPE/OF45 with CHK1 decreases CHK1 levels in the ubiquitin E3 ligases (Cul1 and Cul4A) complex, which suggests that MEPE/OF45 competes with the ubiquitin E3 ligases binding to CHK1 and thus decreases CHK1 from ubiquitin-mediated proteolysis. These findings reveal an important role of MEPE/OF45 in protecting cells from DNA damage induced killing through stabilizing CHK1, which would provide MEPE/OF45 as a new target for sensitizing tumor cells to radiotherapy or chemotherapy

Similar works

This paper was published in Jefferson Digital Commons.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.