Maximum likelihood decoding of neuronal inputs from an interspike interval distribution

Abstract

An expression for the probability distribution of the interspike interval of a leaky integrate-and-fire (LIF) model neuron is rigorously derived, based on recent theoretical developments in the theory of stochastic processes. This enables us to find for the first time a way of developing maximum likelihood estimates (MLE) of the input information (e.g., afferent rate and variance) for an LIF neuron from a set of recorded spike trains. Dynamic inputs to pools of LIF neurons both with and without interactions are efficiently and reliably decoded by applying the MLE, even within time windows as short as 25 msec

Similar works

Full text

thumbnail-image

Warwick Research Archives Portal Repository

redirect
Last time updated on 28/06/2012

This paper was published in Warwick Research Archives Portal Repository.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.