journal article

Energy transfer in reconstituted peridinin-chlorophyll-protein complexes : ensemble and single-molecule spectroscopy studies

Abstract

We combine ensemble and single-molecule spectroscopy to gain insight into the energy transfer between chlorophylls (Chls) in peridinin-chlorophyll-protein (PCP) complexes reconstituted with Chl a, Chl b, as well as both Chl a and Chl b. The main focus is the heterochlorophyllous system (Chl a/b-N-PCP), and reference information essential to interpret experimental observations is obtained from homochlorophyllous complexes. Energy transfer between Chls in Chl a/b-N-PCP takes place from Chl b to Chl a and also from Chl a to Chl b with comparable Förster energy transfer rates of 0.0324 and 0.0215ps⁻¹, respectively. Monte Carlo simulations yield the ratio of 39:61 for the excitation distribution between Chl a and Chl b, which is larger than the equilibrium distribution of 34:66. An average Chl a/Chl b fluorescence intensity ratio of 66:34 is measured, however, for single Chl a/b-N-PCP complexes excited into the peridinin (Per) absorption. This difference is attributed to almost three times more efficient energy transfer from Per to Chl a than to Chl b. The results indicate also that due to bilateral energy transfer, the Chl system equilibrates only partially during the excited state lifetimes.10 page(s

Similar works

Full text

thumbnail-image

Research from Macquarie University

redirect
Last time updated on 18/08/2016

This paper was published in Research from Macquarie University.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.