journal article

Fluid-structure interaction investigation of spiral flow in a model of abdominal aortic aneurysm

Abstract

The presence of a spiral arterial blood flow pattern in both animals and humans has been widely accepted. The effect of spiral flow on physiological processes associated with abdominal aortic aneurysm (AAA) development and progressions can provide valuable information. The purpose of this study is to investigate the influence of spiral flow on haemodynamic changes in an elastic AAA model by implementing a coupled fluid–structure interaction (FSI) analysis. The results showed that an increase in the intensity of spiral flow resulted in an increase in maximum wall shear stress (WSS) and a decrease in maximum wall stress; however, the spiral flow effect on the WSS was higher than the wall stress. It was also shown that not taking into consideration the effect of spiral flow in modelling of AAA can underestimate the magnitude of WSS by up to 30% and overestimate the magnitude of wall stress by up to 11%. The presence of spiral flow within AAAs is associated with beneficial and detrimental effects. The beneficial effects are to reduce the wall stress and the size of regions with low WSS which in turn reduce the risk of rupture, endothelial dysfunction and the development of atherosclerosis. However, the increase in magnitude of WSS is seen as the detrimental effect of spiral flow.9 page(s

Similar works

Full text

thumbnail-image

Research from Macquarie University

redirect
Last time updated on 18/08/2016

This paper was published in Research from Macquarie University.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.