Location of Repository

Modulation of NTC frequencies by Pc5 ULF pulsations : experimental test of the generation mechanism and magnetoseismology of the emitting surface

By S. Grimald, C. (Claire) Foullon, P. M. E. Décréau, G. Le Rouzic, X. Suraud and X. Vallières


Nonthermal continuum (NTC) radiation is believed to be emitted by the conversion of an electrostatic wave into an electromagnetic one, which takes place at the Earth's magnetic equator. It is generally accepted that the frequency of the electrostatic wave at the source meets a local characteristic frequency placed in between two multiples of the electron cyclotron frequency, fce, which results in emission of a narrow band frequency element. In an event on 14 August 2003, we compare oscillations of the central frequency of distinct NTC frequency elements observed from Cluster orbiting near perigee, with simultaneous Pc5 Ultra Low Frequency (ULF) pulsations in the magnetic field observed from the same platform. The latter magnetic perturbations are interpreted as magnetohydrodynamic poloidal waves, where fundamental and second harmonic modes coexist. The NTC oscillation and the fundamental wave have similar periods, but are phase shifted by a quarter of period. From the correlation between both signals, and the proximity of the NTC source (localized via triangulation) with Cluster, we infer that the poloidal perturbations are spatially uniform between the source and the satellites. From the phase shift between signals, we conclude that the electrostatic wave which converts into NTC is mainly governed by the plasma density, affected by movements of the magnetic field lines. Furthermore, we demonstrate that the observations can be used to perform a magnetoseismology of the emitting surface. The results show a steepening of the plasmapause density profile near the satellites, which can be responsible for the generation of NTC emission

Topics: QB, QC
Publisher: American Geophysical Union
Year: 2009
OAI identifier: oai:wrap.warwick.ac.uk:3888

Suggested articles



  1. (1994). An overview of spacecraft observations of 10 s to 600 s period magnetic pulsations in the Earth’s magnetosphere, in Solar Wind Sources of Magnetospheric Ultra-Low-Frequency Waves, doi
  2. (1987). Eigenmode analysis of compressional waves in the magnetosphere, doi
  3. (2006). Observations of continuum radiations close to the plasmapause: Evidence for small scale sources,
  4. (2001). The Cluster magnetic field investigation: Overview of in-flight performance and initial results, doi
  5. (1984). Upper hybrid turbulence as a source of nonthermal continuum radiation, doi
  6. (1958). Waves in a plasma in a magnetic field, doi

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.