Capillary bioreactors based on human purine nucleoside phosphorylase: A new approach for ligands identification and characterization

Abstract

The enzyme purine nucleoside phosphorylase (PNP) is a target for the discovery of new lead compounds employed on the treatment severe T-cell mediated disorders. Within this context, the development of new, direct, and reliable methods for ligands screening is an important task. This paper describes the preparation of fused silica capillaries human PNP (HsPNP) immobilized enzyme reactor (IMER). The activity of the obtained IMER is monitored on line in a multidimensional liquid chromatography system, by the quantification of the product formed throughout the enzymatic reaction. The Km value for the immobilized enzyme was about twofold higher than that measured for the enzyme in solution (255 +/- 29.2 mu M and 133 +/- 114.9 mu M, respectively). A new fourth-generation immucillin derivative (DI4G: IC50 = 40.6 +/- 0.36 nM), previously identified and characterized in HsPNP free enzyme assays, was used to validate the IMER as a screening method for HsPNP ligands. The validated method was also used for mechanistic studies with this inhibitor. This new approach is a valuable tool to PNP ligand screening, since it directly measures the hypoxanthine released by inosine phosphorolysis, thus furnishing more reliable results than those one used in a coupled enzymatic spectrophotometric assay. (C) 2011 Elsevier B.V. All rights reserved

Similar works

Full text

thumbnail-image

RCAAP - Repositório Científico de Acesso Aberto de Portugal

redirect
Last time updated on 10/08/2016

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.