Skip to main content
Article thumbnail
Location of Repository

Predictive study of structural, electronic, magnetic and thermodynamic properties of XFeO3 (X = Ag, Zr and Ru) multiferroic materials in cubic perovskite structure: first-principles calculations

By Moulay N., Ameri M., Azaz Y., Zenati A., Al-Douri Y. and Ameri I.

Abstract

The full potential linear-muffin-tin-orbital method within the spin local density approximation has been used to study the structural, electronic, magnetic and thermodynamic properties of three multiferroic compounds of XFeO3 type. Large values of bulk modulus for these compounds have been obtained, which demonstrates their hardness. The calculated total and partial density of states of these compounds shows a complex of strong hybridized 3d and 4d states at Fermi level. The two degenerate levels eg and t2g clearly demonstrate the origin of this complex. We have also investigated the effect of pressure, from 0 GPa to 55 GPa, on the magnetic moment per atom and the exchange of magnetic energy between the ferromagnetic and antiferromagnetic states. For more detailed knowledge, we have calculated the thermodynamic properties, and determined heat capacity, Debye temperature, bulk modulus and enthropy at different temperatures and pressures for the three multiferroic compounds. This is the first predictive calculation of all these properties

Topics: ab-initio, structural, electronic, magnetic, thermodynamic properties, Materials of engineering and construction. Mechanics of materials, TA401-492
Publisher: De Gruyter Open
Year: 2015
DOI identifier: 10.1515/msp-2015-0047
OAI identifier: oai:doaj.org/article:e0cba49ab5a64ff39edf21d35cb916db
Journal:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • https://doaj.org/toc/2083-134X (external link)
  • http://www.degruyter.com/view/... (external link)
  • https://doaj.org/article/e0cba... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.