In 1927 M. Morse discovered that the number of critical points of a smooth function on a manifold is closely related to the topology of the manifold. This became a starting point of the Morse theory which is now one of the basic parts of differential topology. It is a large and actively developing domain of differential topology, with applications and connections to many geometrical problems. The aim of the present book is to give a systematic treatment of the geometric foundations of a subfield of that topic, the circle-valued Morse functions, a subfield of Morse theory
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.