Article thumbnail

On proper holomorphic mappings: Smooth extension to the boundary

By Zhiqiang Wu


The subject of proper holomorphic mapping is currently a very active area of research. One of the most interesting questions is the following: if $\Omega\sb1$, $\Omega\sb2 \subseteq C\sp{n}$ are open sets with C$\sp{\infty}$ boundaries and if $F : \Omega\sb1 \to \Omega\sb2$ is a biholomorphic map, is it true that F extends to a C$\sp{\infty}$ function on ${\bar \Omega\sb1}$? In my thesis, the conclusion of S. Bell, D. Catlin, K. Diederid and J. E. Formnass (1981, 1982) had been improved. Under certain assumptions about the smoothness of the Bergman kernel Function on the boundary of domain, some new conclusions of proper holomorphic mapping smooth extension to the boundary are also obtained

Topics: Mathematics
Year: 1988
OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)

  • To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.

    Suggested articles