Moment theory and some inverse problems in potential theory and heat conduction

Abstract

Moment Theory is not a new subject; however, in classical treatments, the ill-posedness of the problem is not taken into account - hence this monograph. Assuming a "true" solution to be uniquely determined by a sequence of moments (given as integrals) of which only finitely many are inaccurately given, the authors describe and analyze several regularization methods and derive stability estimates. Mathematically, the task often consists in the reconstruction of an analytic or harmonic function, as is natural from concrete applications discussed (e.g. inverse heat conduction problems, Cauchy's problem for the Laplace equation, gravimetry). The book can be used in a graduate or upper undergraduate course in Inverse Problems, or as supplementary reading for a course on Applied Partial Differential Equations

Similar works

Full text

thumbnail-image

CERN Document Server

redirect
Last time updated on 09/08/2016

This paper was published in CERN Document Server.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.