Evaluation of Acacia nilotica as a non conventional low cost biosorbent for the elimination of Pb(II) and Cd(II) ions from aqueous solutions

Abstract

In the present study a biomass derived from the leaves of Acacia nilotica was used as an adsorbent material for the removal of cadmium and lead from aqueous solution. The effect of various operating variables, viz., adsorbent dosage, contact time, pH and temperature on the removal of cadmium and lead has been studied. Maximum adsorption of cadmium and lead arises at a concentration of 2 g/50 ml and 3 g/50 ml and at a pH value of 5 and 4, respectively. The sorption data favored the pseudo-second-order kinetic model. Langmuir, Freundlich and Dubinin–Radushkevich (D–R) models were applied to describe the biosorption isotherm of the metal ions by A. nilotica biomass. Based on regression coefficient, the equilibrium data found were fitted well to the Langmuir equilibrium model than other models. Thermodynamic parameters such as free energy change (ΔG°), enthalpy change (ΔH°) and entropy change (ΔS°) have been calculated, respectively revealed the spontaneous, endothermic and feasible nature of adsorption process. The activation energy of the biosorption (Ea) was estimated as 9.34 kJ mol−1 for Pb and 3.47 kJ mol−1 for Cd from Arrhenius plot at different temperatures

Similar works

Full text

thumbnail-image

Directory of Open Access Journals

redirect
Last time updated on 09/08/2016

This paper was published in Directory of Open Access Journals.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.