Johnson-Cook constitutive model is still the most used model in metal cutting simulation, although several drawbacks reported in the literature. A high number of Johnson-Cook model parameters can be found in the literature for the same work material. One question that may arise is “What is the most suitable set of Johnson-Cook model parameters for a given material?”. The present paper puts in evidence some issues related with the selection of these parameters from the literature. In this contribution, two sets of Johnson-Cook model parameters for Ti-6A-4V are evaluated, using three types of metal cutting models. These models are based on three different formulations: Lagrangian, Arbitrary Eulerian-Lagrangian (ALE) and Couple Lagrangian-Eulerian (CEL). This evaluation is based on the comparison between measured and predicted chip geometry, chip compression ratio, forces, plastic deformation and temperature distributions
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.