Intracellular Complexes of the Early-Onset Torsion Dystonia-Associated AAA+ ATPase TorsinA

Abstract

A single GAG codon deletion in the gene encoding torsinA is linked to most cases of early-onset torsion dystonia. TorsinA is an ER-localized membrane-associated ATPase from the AAA+ superfamily with an unknown biological function. We investigated the formation of oligomeric complexes of torsinA in cultured mammalian cells and found that wild type torsinA associates into a complex with a molecular weight consistent with that of a homohexamer. Interestingly, the dystonia-linked variant torsinAΔE displayed a reduced propensity to form the oligomers compared to the wild type protein. We also discovered that the deletion of the N-terminal membrane-associating region of torsinA abolished oligomer formation. Our results demonstrate that the dystonia-linked mutation in the torsinA gene produces a protein variant that is deficient in maintaining its oligomeric state and suggest that ER membrane association is required to stabilize the torsinA complex

Similar works

Full text

thumbnail-image

University of Queensland eSpace

redirect
Last time updated on 04/08/2016

This paper was published in University of Queensland eSpace.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.