Article thumbnail

On the $p$-Laplacian with Robin boundary conditions and boundary trace theorems

By Hynek Kovarik and Konstantin Pankrashkin

Abstract

Let $\Omega\subset\mathbb{R}^\nu$, $\nu\ge 2$, be a $C^{1,1}$ domain whose boundary $\partial\Omega$ is either compact or behaves suitably at infinity. For $p\in(1,\infty)$ and $\alpha>0$, define \[ \Lambda(\Omega,p,\alpha):=\inf_{\substack{u\in W^{1,p}(\Omega)\\ u\not\equiv 0}}\dfrac{\displaystyle \int_\Omega |\nabla u|^p \mathrm{d} x - \alpha\displaystyle\int_{\partial\Omega} |u|^p\mathrm{d}\sigma}{\displaystyle\int_\Omega |u|^p\mathrm{d} x}, \] where $\mathrm{d}\sigma$ is the surface measure on $\partial\Omega$. We show the asymptotics \[ \Lambda(\Omega,p,\alpha)=-(p-1)\alpha^{\frac{p}{p-1}} - (\nu-1)H_\mathrm{max}\, \alpha + o(\alpha), \quad \alpha\to+\infty, \] where $H_\mathrm{max}$ is the maximum mean curvature of $\partial\Omega$. The asymptotic behavior of the associated minimizers is discussed as well. The estimate is then applied to the study of the best constant in a boundary trace theorem for expanding domains, to the norm estimate for extension operators and to related isoperimetric inequalities

Topics: Mathematics - Spectral Theory, Mathematics - Analysis of PDEs
Publisher: 'Springer Science and Business Media LLC'
Year: 2016
DOI identifier: 10.1007/s00526-017-1138-4
OAI identifier: oai:arXiv.org:1603.01737

Suggested articles


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.