There is broad consensus that clinical interventions should be compared in randomised trials measuring patient outcomes. However, methods for evaluation of policy and service interventions remain contested. This article considers one aspect of this complex issue—the selection of the primary end point (the end point used to determine sample size and given most weight in the interpretation of results). Other methodological issues affecting the design and interpretation of evaluations of policy and service interventions (including attributing effect to cause) have been discussed elsewhere,1 and we will consider them only in so far as they may affect selection of the primary end point. Our analysis begins with a classification of policy and service interventions based on an extended version of Donabedian’s causal chain
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.