Understanding ground deformation mechanisms for multi-propped excavation in soft clay

Abstract

Deep excavation works are carried out to construct underground infrastructures such as deep basements, subways, and service tunnels. The execution of these deep excavation works requires the use of retaining walls and bracing systems. Inadequate support systems have always been of major concern, as excessive ground movement induced during excavation could cause damage to neighboring structures, resulting in delays, disputes, and cost overruns. To gain a better understanding of the mechanisms involved in soil excavations, centrifuge model tests of deep excavations in slightly over-consolidated soft clay have been carried out using a newly developed testing system, in which the construction sequence of a multi-propped wall for deep excavations can be simulated in flight. Deformation mechanisms are observed using Particle Image Velocimetry. Settlements of the ground surface and changes in pore water pressure are monitored during the excavation. The effects of prop stiffness, wall rigidity, and excavation geometry on the characteristics of ground deformation and soil-structure interaction are demonstrated and discussed. The use of the conservation of energy within the framework of the mobilizable strength design in calculating ground movements is validated and shown to perform satisfactorily.This is the author accepted manuscript. The final published version can be found on the publisher website at: http://www.sciencedirect.com/science/article/pii/S0038080614000286 Copyright © 2014 Japanese Geotechnical Society. Production and hosting by Elsevier B.V. All rights reserved

Similar works

Full text

thumbnail-image

Apollo (Cambridge)

redirect

This paper was published in Apollo (Cambridge).

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.