Regularization of first order computational homogenization for multiscale analysis of masonry structures

Abstract

The final publication is available at Springer via http://dx.doi.org/10.1007/s00466-015-1230-6This paper investigates the possibility of using classical first order computational homogenization together with a simple regularization procedure based on the fracture energy of the micro-scale-constituents. A generalized geometrical characteristic length takes into account the size of the macro-scale element as well as the size of the RVE (and its constituents). The proposed regularization ensures objectivity of the dissipated energy at the macro-scale, with respect to the size of the FE in both scales and with respect to the size of the RVE. The proposed method is first validated against benchmark examples, and finally applied to the numerical simulation of experimental tests on in-plane loaded shear walls made of periodic masonry.Peer ReviewedPostprint (author's final draft

Similar works

Full text

thumbnail-image

UPCommons. Portal del coneixement obert de la UPC

redirect
Last time updated on 16/06/2016

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

Licence: Open Access