Skip to main content
Article thumbnail
Location of Repository

AgSbS2 semiconductor-sensitized solar cells

By Yi-Rong Ho and Ming-Way Lee


We present a ternary semiconductor nanoparticle sensitizer – AgSbS2 – for solar cells. AgSbS2 nanoparticles were grown using a two-stage successive ionic layer adsorption and reaction process. First, Ag2S nanoparticles were grown on the surface of a nanoporous TiO2 electrode. Secondly, a Sb–S film was coated on top of the Ag2S. The double-layered structure was transformed into AgSbS2 nanoparticles ~ 40 nm in diameter, after post-deposition heating at 350 °C. The AgSbS2-sensitized TiO2 electrodes were fabricated into liquid-junction solar cells. The best cell yielded a power conversion efficiency of 0.34% at 1 sun and 0.42% at 0.1 sun. The external quantum efficiency (EQE) spectrum covered the range of 380–680 nm with a maximal EQE of 10.5% at λ = 470 nm. The method can be applied to grow other systems of ternary semiconductor nanoparticles for solar absorbers

Topics: Silver antimony sulfide, Solar cell, Semiconductor sensitizer, Successive ionic layer adsorption and reaction
Year: 2014
DOI identifier: 10.1016/j.elecom.2012.10.003
OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.