An information-theoretic image quality measure: Comparison with statistical similarity

Abstract

We present an information-theoretic approach for structural similarity for assessing gray scale image quality. The structural similarity measure SSIM, proposed in 2004, has been successflly used and verfied. SSIM is based on statistical similarity between the two images. However, SSIM can produce confusing results in some cases where it may give a non-trivial amount of similarity for two different images. Also, SSIM cannot perform well (in detecting similarity or dissimilarity) at low peak signal to noise ratio (PSNR). In this study, we present a novel image similarity measure, HSSIM, by using information - theoretic technique based on joint histogram. The proposed method has been tested under Gaussian noise. Simulation results show that the proposed measure HSSIM outperforms statistical similarity SSIM by ability to detect similarity under very low PSNR. The average difference is about 20dB

Similar works

This paper was published in Research Online @ ECU.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

Licence: http://creativecommons.org/licenses/by/4.0/