Plasticity of the PAS domain and a potential role for signal transduction in the histidine kinase DcuS

Abstract

The mechanistic understanding of how membrane-embedded sensor kinases recognize signals and regulate kinase activity is currently limited. Here we report structure-function relationships of the multidomain membrane sensor kinase DcuS using solidstate NMR, structural modeling and mutagenesis. Experimental data of an individual cytoplasmic Per-Arnt-Sim (PAS) domain were compared to structural models generated in silico. These studies, together with previous NMR work on the periplasmic PAS domain, enabled structural investigations of a membrane-embedded 40-kDa construct by solid-state NMR, comprising both PAS segments and the membrane domain. Structural alterations are largely limited to protein regions close to the transmembrane segment. Data from isolated and multidomain constructs favor a disordered N-terminal helix in the cytoplasmic domain. Mutations of residues in this region strongly influence function, suggesting that protein flexibility is related to signal transduction toward the kinase domain and regulation of kinase activity

Similar works

Full text

thumbnail-image

Utrecht University Repository

redirect
Last time updated on 14/06/2016

This paper was published in Utrecht University Repository.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.