Lane formation in driven mixtures of oppositely charged colloids

Abstract

We present quantitative experimental data on colloidal laning at the single-particle level. Our results demonstrate a continuous increase in the fraction of particles in a lane for the case where oppositely charged particles are driven by an electric field. This behavior is accurately captured by Brownian dynamics simulations. By studying the fluctuations parallel and perpendicular to the field we identify the mechanism that underlies the formation of lanes

Similar works

Full text

thumbnail-image

Utrecht University Repository

redirect
Last time updated on 14/06/2016

This paper was published in Utrecht University Repository.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.