The spatial distribution of star and cluster formation in M 51

Abstract

Aims. We study the connection between spatially resolved star formation and young star clusters across the disc of M 51. Methods. We combine star cluster data based on B, V, and I-band Hubble Space Telescope ACS imaging, together with new WFPC2 U-band photometry to derive ages, masses, and extinctions of 1580 resolved star clusters using SSP models. This data is combined with data on the spatially resolved star formation rates and gas surface densities, as well as H and 20 cm radio-continuum (RC) emission, which allows us to study the spatial correlations between star formation and star clusters. Two-point autocorrelation functions are used to study the clustering of star clusters as a function of spatial scale and age. Results. We find that the clustering of star clusters among themselves decreases both with spatial scale and age, consistent with hierarchical star formation. The slopes of the autocorrelation functions are consistent with projected fractal dimensions in the range of 1.2-1.6, which is similar to other galaxies, therefore suggesting that the fractal dimension of hierarchical star formation is universal. Both star and cluster formation peak at a galactocentric radius of ~2.5 and ~5 kpc, which we tentatively attribute to the presence of the 4:1 resonance and the co-rotation radius. The positions of the youngest

Similar works

Full text

thumbnail-image

Utrecht University Repository

redirect
Last time updated on 14/06/2016

This paper was published in Utrecht University Repository.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.