Skip to main content
Article thumbnail
Location of Repository

Concentrating colloids with electric field gradients. II. Phase transitions and crystal buckling of long-ranged repulsive charged spheres in an electric bottle

By M.E. Leunissen and A. van Blaaderen


We explored the usefulness of electric field gradients for the manipulation of the particle concentration in suspensions of charged colloids, which have long-ranged repulsive interactions. In particular, we studied the compression obtained by ``negative'' dielectrophoresis, which drives the particles to the regions of lowest field strength, thus preventing unwanted structural changes by induced dipole-dipole interactions. We used several sample cell layouts and suspension compositions, with a different range of the interparticle repulsions. For these systems, we obtained sufficient compression to observe a transition from the initial fluid phase to a random hexagonal close-packed crystal, as well as a body-centered cubic crystal. The heterogeneous dielectrophoretic crystallization mechanism involved an intriguing ``pluglike'' motion of the crystal, similar to what we have previously reported for hard-sphere suspensions. In this way, remarkably large single crystals were formed of several millimeters wide and a couple of centimeters long. Moreover, we found that these crystals could be compressed to such an extent that it led to an anisotropic deformation (``buckling'') and, upon subsequent relaxation, a reorientation of the lattice, while stacking errors disappeared. These striking differences with the compressed hard-sphere crystals that we studied before [M. E. Leunissen et al., J. Chem. Phys. 128, 164508 (2008).] are likely due to the smaller elastic moduli of the present lower-density soft-sphere crystals

Year: 2008
OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.