Thermodynamically Stable Pickering Emulsions

Abstract

We show that under appropriate conditions, mixtures of oil, water, and nanoparticles form thermodynamically stable oil-in-water emulsions with monodisperse droplet diameters in the range of 30–150 nm. This observation challenges current wisdom that so-called Pickering emulsions are at most metastable and points to a new class of mesoscopic equilibrium structures. Thermodynamic stability is demonstrated by the spontaneous evolution of binary droplet mixtures towards one intermediate size distribution. Equilibrium interfacial curvature due to an asymmetric charge distribution induced by adsorbed colloids explains the growth of emulsion droplets upon salt addition. Moreover, the existence of a minimal radius of curvature with a concomitant expulsion of excess oil is in close analogy with microemulsions

Similar works

Full text

thumbnail-image

Utrecht University Repository

redirect
Last time updated on 14/06/2016

This paper was published in Utrecht University Repository.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.