Entropy-drive demixing in binary hard-core mixtures: From hard spherocylinders towards hard spheres

Abstract

We present a computer simulation study of a binary mixture of hard spherocylinders with different diameters (D1,D2) and the same lengths (L15L25L). We first study a mixture of spherocylinders with lengths L 515D2 and D150, which can be regarded as a mixture of rodlike colloids and ideal needles. We find clearly an entropy-driven isotropic-isotropic (I-I) demixing transition in this mixture. In addition, we study a mixture of spherocylinders with diameter ratio D1 /D250.1 and we investigated the I-I demixing transition as a function of the length L of the particles. We observe a stable I-I demixing for all values of L in the range of 3<L/D2<15, but we could not reach the limit L50, i.e., the hard-sphere mixture with diameter ratio of 0.1. Striking agreement is found for L/D2515 with the results that follow from the second virial theory for infinitely elongated rods. For L/D252, we did not find a demixing transition till a total packing fraction of h50.581, which is higher than the packing fraction at which freezing occurs for a pure system of thick rods. Thus this result and the extrapolation of our finite-L data to L50 gives us a fingerprint that the fluid-fluid demixing transition in the binary hard-sphere mixture with a diameter ratio of 0.1 is metastable with respect to freezing or does not exist at all at densities below close packing

Similar works

Full text

thumbnail-image

Utrecht University Repository

redirect
Last time updated on 14/06/2016

This paper was published in Utrecht University Repository.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.