Skip to main content
Article thumbnail
Location of Repository

Nerve function and oxidative stress in diabetic and vitamin E deficient rats

By W.H. Gispen, P.S. van Dam, B.S. van Asbeck, B. Bravenboer, J.F.L.M. van Oirschot and J.J. Marx


Nerve dysfunction in diabetes is associated with increased oxidative stress. Vitamin E depletion also leads to enhanced presence of reactive oxygen species (ROS). We compared systemic and endoneurial ROS activity and nerve conduction in vitamin E-depleted control and streptozotocin-diabetic rats (CE− and DE−), and in normally fed control and diabetic animals (CE+ and DE+). Nerve conduction was reduced in both diabetic groups. Vitamin E depletion caused a small further nerve conduction deficit in the diabetic, but not in the control animals. The combination of vitamin E deficiency and streptozotocin-diabetes (group DE−) appeared to be lethal. In the remaining groups, an important rise in sciatic nerve malondialdehyde (MDA) was observed in the vitamin E-depleted control rats. In contrast, plasma MDA levels were elevated in group DE+ only, whereas hydrogen peroxide levels were increased in group CE−. Endoneurial total and oxidized glutathione and catalase were predominantly elevated in group DE+. These data show that nerve lipid peroxidation induced by vitamin E depletion does not lead to reduced nerve conduction or changes in antioxidant concentrations as observed in STZ-diabetes. The marked systemic changes in MDA and antioxidants suggest that nerve dysfunction in experimental hyperglycemia is rather a consequence of systemic than direct nerve damage

Topics: Geneeskunde
Year: 1997
OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.