Skip to main content
Article thumbnail
Location of Repository

Characterization of Al2O3-Supported Manganese Oxides by Electron Spin Resonance and Diffuse Reflectance Spectroscopy

By W.S. Kijlstra, E.K. Poels, A. Bliek, B.M. Weckhuysen and R.A. Schoonheydt


Alumina-supported manganese oxides, used as catalysts for the selective catalytic reduction of NO, were\ud characterized by combined electron spin resonance and diffuse reflectance spectroscopies. Upon impregnation\ud of the acetate precursor solution, the [Mn(H2O)6]^2+ complex interacts strongly with surface hydroxyls of the\ud y-Al2O3. Evidence was obtained that this anchoring reaction proceeds at a Mn/OH = 1/2 ratio up to 4.5 wt\ud % Mn loading, leading to a highly dispersed oxidic manganese layer. At higher loadings, the precursor\ud complex is deposited on the surface concurrently. Upon drying at 383 K, part of the manganese is oxidized\ud to higher oxidation states (Mn^3+ and Mn^4+ ), while a further increase in (average) oxidation state takes place\ud upon calcination at 573 K. After calcination, the manganese species are present as a mixture of Mn^2+ ,Mn^3+ ,\ud and Mn^4+ . At low loadings (<1 wt %), approximately equal amounts of these three oxidation states are\ud present, whereas Mn 3+ becomes the predominant species at higher loadings. ESR reveals that at low loadings,\ud almost all the manganese is present as isolated species, while at 4.5 wt % Mn loading, still more than 70%\ud of the manganese is isolated. The decrease of the fraction of isolated manganese species at higher loadings\ud is accompanied by a decreased selectivity toward N2 production in the selective catalytic reduction of NO.\ud The fraction Mn^2+ is present in an axially distorted octahedral coordination

Topics: Scheikunde
Year: 1996
OAI identifier:

Suggested articles

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.