Quantum Solvation of Carbonyl Sulfide with Helium Atoms

Abstract

High-resolution infrared and microwave spectra of HeN-carbonyl sulfide (HeN-OCS) clusters with N ranging from 2 to 8 have been detected and unambiguously assigned. The spectra show the formation of a solvation layer beginning with an equatorial "donut" of five helium atoms around the OCS molecule. The cluster moment of inertia increases as a function of N and overshoots the liquid droplet limit for N > 5, implying that even atoms in the first solvation shell are decoupled from the OCS rotation in helium nanodroplets. To the extent that this is due to superfluidity, the results directly explore the microscopic evolution of a phenomenon that is formally macroscopic in nature.NRC publication: Ye

Similar works

Full text

thumbnail-image

NRC Publications Archive

redirect
Last time updated on 08/06/2016

This paper was published in NRC Publications Archive.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.