Skip to main content
Article thumbnail
Location of Repository

Extremum statistics: a framework for data analysis

By S.C. Chapman, G. Rowlands and Nicholas W. Watkins

Abstract

Recent work has suggested that in highly correlated systems, such as sandpiles, turbulent fluids, ignited trees in forest fires and magnetization in a ferromagnet close to a critical point, the probability distribution of a global quantity (i.e. total energy dissipation, magnetization and so forth) that has been normalized to the first two moments follows a specific non-Gaussian curve. This curve follows a form suggested by extremum statistics, which is specified by a single parameter a (a = 1 corresponds to the Fisher-Tippett Type I (“Gumbel”) distribution). Here we present a framework for testing for extremal statistics in a global observable. In any given system, we wish to obtain a, in order to distinguish between the different Fisher-Tippett asymptotes, and to compare with the above work. The normalizations of the extremal curves are obtained as a function of a. We find that for realistic ranges of data, the various extremal distributions, when normalized to the first two moments, are difficult to distinguish. In addition, the convergence to the limiting extremal distributions for finite data sets is both slow and varies with the asymptote. However, when the third moment is expressed as a function of a, this is found to be a more sensitive method

Topics: Physics, Data and Information
Publisher: European Geosciences Union
Year: 2002
OAI identifier: oai:nora.nerc.ac.uk:13178
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://www.nonlin-processes-ge... (external link)
  • http://nora.nerc.ac.uk/id/epri... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.